This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Synthesis, Characterization and Electrochemical Polymerization of Oligomethylthiophenes

G. Barbarella^a; A. Bongini^b; M. Mastragostino^b; M. Zambianchi^a

^a Istituto dei Composti del Carbonio Contenenti Eteroatomi e loro Applicazioni, Consiglio Nazionale Ricerche, Emilia, Italy ^b Dipartimento Chimico 'G. Ciamician', Bologna, Italy

To cite this Article Barbarella, G. , Bongini, A. , Mastragostino, M. and Zambianchi, M.(1993) 'Synthesis, Characterization and Electrochemical Polymerization of Oligomethylthiophenes', Phosphorus, Sulfur, and Silicon and the Related Elements, 74: 1, 471-472

To link to this Article: DOI: 10.1080/10426509308038169
URL: http://dx.doi.org/10.1080/10426509308038169

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS, CHARACTERIZATION AND ELECTROCHEMICAL POLYMERIZATION OF OLIGOMETHYLTHIOPHENES

- G. BARBARELLA^a, A. BONGINI^b, M. MASTRAGOSTINO^b, and M. ZAMBIANCHI^a
- a) Istituto dei Composti del Carbonio Contenenti Eteroatomi e loro Applicazioni, Consiglio Nazionale Ricerche, Via della Chimica 8, 40064 Ozzano Emilia, Italy
- b) Dipartimento Chimico 'G. Ciamician', Via Selmi 2, 40126, Bologna, Italy

Abstract. Regiospecifically methyl substituted α-conjugated thiophene oligomers have been synthesized and their structural and conformational properties investigated by ¹³C NMR, X-ray and force field MMP2 calculations. The use of these molecules as 'monomers' for electropolymerization affords poly(3-methylthiophenes) showing spectroelectrochemical properties which depend on the size and the substitution pattern of the starting oligomer.

Semiconducting α -conjugated polythiophenes have attracted increasing interest in recent years because of their unique electrical, electrochemical and optical properties 1 . Due to their chemical stability, a variety of applications in the field of molecular electronics, electrochromic devices, sensors, etc.. have been proposed for these materials. Recently, it has been found that α -conjugated thiophene oligomers may have better semiconducting properties than polythiophene itself 2 .

The presence of substituents β to sulfur allows polythiophenes to become soluble in organic solvents or in water³, opening the way to a better control of their chemical and physical properties for specific technological applications.

The relationship between the structure and the conformation of substituted polythiophenes and their electric and optical properties is a matter of great current interest. To explore this relationship in the case of poly(3-methylthiophenes) we have synthesized, characterized and electrochemically polymerized a series of α -conjugated methylsubstituted bi-, quater- and sexi- thiophene oligomers with *head-to-head*, *head-to-tail* or *tail-to-tail* junctions between adjacent rings (see next page). The synthetic strategy for the preparation of oligomethylthiophenes was based on a combination of metalation/cross coupling reactions for the creation of carbon-carbon bonds starting from commercial 3-methylthiophene⁴⁻⁹.

On the basis of ¹³C NMR and UV spectroscopies and MMP2 calculations it was found that in solution and in the gas phase the molecular skeleton of these compounds is not planar and that it is conformationally very mobile. On the contrary, X-ray data indicate that in the solid state a fully coplanar arrangement can be attained, even in the presence of strong steric interactions such as those of a head-to-head junction, although at the cost of severe deformations of bond lengths and bond angles.

The electropolymerization of isomeric dimethyl bithiophenes and tetramethyl quaterthiophenes allows the preparation of poly(3-methylthiophenes) with very different optical properties. The polymer optical properties are, in fact, modulated by the size and the regiospecificity of substitution of the starting oligomers and can be interpreted on the basis of the conformational properties of the starting systems^{10,11}.

REFERENCES

- 1. A.O. Patil, A.J. Heeger and F. Wudl, Chem.Rev., 88, 183 (1988).
- 2. D. Delabouglise, M. Hmyene, G. Horowitz, A. Yassar and F. Garnier, Adv. Mater., 4, 107 (1992).
- Y. Ikenoue, J. Chiang, A.O. Patil, F. Wudl and A. J. Heeger, J.Am.Chem.Soc., 110, 2983 (1988).
- 4. J.K. Stille, Angew. Chem. Int. Ed. Engl., 25, 508 (1986).
- 5. K. Tamao, S. Kodama, I. Nakajima and M. Kumada, <u>Tetrahedron</u>, 38, 3347 (1982).
- 6. J. Kagan and S.K. Arora, <u>Heterocycles</u>, 20, 1937 (1983).
- G. Barbarella, A. Bongini and M. Zambianchi, Adv. Mater., 3, 494 (1991).
- 8. G. Barbarella, M. Zambianchi, A. Bongini and L. Antolini, Adv. Mater., 4, 282 (1992).
- 9. G. Barbarella, A. Bongini and M. Zambianchi, <u>Tetrahedron</u>, in press.
- M. Mastragostino, C. Arbizzani, A. Bongini, G. Barbarella and M. Zambianchi, Electrochim. Acta, in press.
- 11. C. Arbizzani, G. Barbarella, A. Bongini, M. Mastragostino and M. Zambianchi, Synthetic Metals, in press.